On 21st of July a research project on perovskite solar cells was presented to the President of Russia Vladimir Putin. At the stand, talented schoolchildren presented a hand-made working prototype of a perovskite solar cell developed in the framework of their project.

Researchers of the Laboratory of New Materials for Solar Energetics of the Department of Materials Science of Moscow State University are conducting an educational project on perovskite photovoltaics with gifted schoolchildren in the educational centre "Sirius" (Sochi, Russia). For the whole month pupils assembled the equipment necessary to deposit thin layers of perovskites, mastered theoretical knowledge and practical skills of the principles of operation and technology of obtaining new-generation solar cells. The result of the project was presented at a demonstration stand with a functioning prototype of a perovskite solar cell. Schoolchildren from different regions of the Russian Federation took part in the project: Murmansk, Rostov-on-Don, Yekaterinburg, Taganrog, as well as from the Moscow State University Gymnasium in Moscow.

July 21, Vladimir Putin visited the educational centre "Sirius", where schoolchildren presented him their project. According to the portalGazeta.ru, the President highly appreciated the developments in Russia in the field of the newest solar cells: "We must be on the brink of this progress, we must think about it today, be prepared for this. We are working in this field quite actively in different directions. I hope that when this is in demand, we will be able to be fully engaged," he said. "Renewable [resources] are the wind, the tides of the wave, this is solar energy. Humanity has a wide choice. The only question is that all this should be efficient and cheaper than hydrocarbons. But we need to think about this today, " the president emphasized.

The project is being implemented by the Laboratory of New Materials for Solar Energetics in order to prepare students and then qualified scientific personnel for the high-tech industries of the Russian economy in the framework of the Federal Program 14.607.21.0147 in the field of applied research and experimental development (project RFMEFI60716X0147) jointly with the industrial partner of the Laboratory, EuroSibEnergo.

 


Recent publications

Exceptional structural diversity of hybrid halocuprates(i) with methylammonium and formamidinium cations
Dalton Transactions, 2023, 52, pp. 7152-7160
DOI: 10.1039/D3DT00687E


Exceptional structural diversity of hybrid halocuprates(i) with methylammonium and formamidinium cations

How to stabilize standard perovskite solar cells to withstand operating conditions under an ambient environment for more than 1000 hours using simple and universal encapsulation
Journal of Energy Chemistry, 2022, in press
DOI: 10.1016/j.jechem.2022.12.010


How to stabilize standard perovskite solar cells to withstand operating conditions under an ambient environment for more than 1000 hours using simple and universal encapsulation

Structure-related bandgap of hybrid lead halide perovskites and close-packed APbX3 family of phases
J. Mater. Chem. C, 2022, 10, pp. 16838-16846
DOI: 10.1039/D2TC03202C


Structure-related bandgap of hybrid lead halide perovskites and close-packed APbX3 family of phases

Crystallization Pathways of FABr-PbBr2-DMF and FABr-PbBr2-DMSO Systems: The Comprehensive Picture of Formamidinium-Based Low-Dimensional Perovskite-Related Phases and Intermediate Solvates
J. Molecular Science, 2022, 23, p. 15344
DOI: 10.3390/ijms232315344


Crystallization Pathways of FABr-PbBr2-DMF and FABr-PbBr2-DMSO Systems: The Comprehensive Picture of Formamidinium-Based Low-Dimensional Perovskite-Related Phases and Intermediate Solvates

Optical Properties and Photostability Improvement of CH3NH3PbI3 Treated by Iodide of Long H3N(CH2)10COOH Bifunctional Cation in “2D/3D” and “Monolayer” Passivation Modes
J. Phys. Chem. C, 2022, 34, 7, pp. 2998-3005
DOI: 10.1021/acs.chemmater.1c03839


Optical Properties and Photostability Improvement of CH3NH3PbI3 Treated by Iodide of Long H3N(CH2)10COOH Bifunctional Cation in “2D/3D” and “Monolayer” Passivation Modes

Ternary Phase Diagrams of MAI–PbI2–DMF and MAI–PbI2–DMSO Systems
J. Phys. Chem. C, 2022, 126, 1, pp. 169–173
DOI: 10.1021/acs.jpcc.1c10062


Ternary Phase Diagrams of MAI–PbI2–DMF and MAI–PbI2–DMSO Systems

Nonmonotonic Photostability of BA2MAn-1PbnI3n+1 Homologous Layered Perovskites
ACS Applied Materials & Interfaces, 2021, 33, 18, pp. 7518–7526
DOI: 10.1021/acsami.1c20043


Nonmonotonic Photostability of BA2MAn–1PbnI3n+1 Homologous Layered Perovskites

Relationships between Distortions of Inorganic Framework and Band Gap of Layered Hybrid Halide Perovskites
Chemistry of Materials, 2021, 33, 18, pp. 7518–7526
DOI: 10.1021/acs.chemmater.1c02467


Relationships between Distortions of Inorganic Framework and Band Gap of Layered Hybrid Halide Perovskites

Universal Strategy of 3D and 2D Hybrid Perovskite Single Crystals Growth via In Situ Solvent Conversion
Chemistry of Materials, 2020, 32, 22, pp. 9805-9812
DOI: 10.1021/acs.chemmater.0c04060


Universal Strategy of 3D and 2D Hybrid Perovskite Single Crystals Growth via In Situ Solvent Conversion

Database of 2D hybrid perovskite materials: open-access collection of crystal structures, band gaps and atomic partial charges predicted by machine learning
Chemistry of Materials, 2020, 32, 17, pp. 7383-7388
DOI: 10.1021/acs.chemmater.0c02290


Database of 2D hybrid perovskite materials: open-access collection of crystal structures, band gaps and atomic partial charges predicted by machine learning

Formamidinium Haloplumbate Intermediates: The Missing Link in a Chain of Hybrid Perovskites Crystallization
Chemistry of Materials, 2020, 32, 18, pp. 7739-7745
DOI: 10.1021/acs.chemmater.0c02156


Formamidinium Haloplumbate Intermediates: The Missing Link in a Chain of Hybrid Perovskites Crystallization

New Acidic Precursor and Acetone-Based Solvent for Fast Perovskite Processing via Proton-Exchange Reaction with Methylamine
Molecules, 2020, 25, 8, p.1856
DOI: 10.3390/molecules25081856


New Acidic Precursor and Acetone-Based Solvent for Fast Perovskite Processing via Proton-Exchange Reaction with Methylamine

From metallic lead films to perovskite solar cells through lead conversion with polyhalides solutions
ACS Appl. Mater. Interfaces, 2020, in press
DOI: 10.1021/acsami.0c02492


From metallic lead films to perovskite solar cells through lead conversion with polyhalides solutions

New features of photochemical decomposition of hybrid lead halide perovskites by laser irradiation
ACS Appl. Mater. Interfaces, 2020, 12, pp. 12755-12762
DOI: 10.1021/acsami.9b21689


New features of photochemical decomposition of hybrid lead halide perovskites by laser irradiation

Transferable Approach of Semi-Empirical Modeling of Disordered Mixed Halide Hybrid Perovskites CH3NH3Pb(I1-xBrx)3: Prediction of Thermodynamic Properties, Phase Stability and Deviations from Vegard’s Law
Journal of Physical Chemistry C, 2019, 42, pp. 26036-26040
DOI: 10.1021/acs.jpcc.9b08995


Transferable Approach of Semi-Empirical Modeling of Disordered Mixed Halide Hybrid Perovskites CH3NH3Pb(I1-xBrx)3: Prediction of Thermodynamic Properties, Phase Stability and Deviations from Vegard’s Law

Methylammonium Polyiodides: Remarkable Phase Diversity of the Simplest and Low-melting Alkylammonium Polyiodide System
Journal of Physical Chemistry Letters, 2019, 10, pp. 5776-5780
DOI: 10.1021/acs.jpclett.9b02360


Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics

Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics
Nature Nanotechnology, 2019, 14, pp. 57-63
DOI: 10.1038/s41565-018-0304-y


Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics

Solution processing of methylammonium lead iodide perovskite from gamma-butyrolactone: crystallization mediated by solvation equilibrium
Chemistry of Materials, 2018, 30, pp. 5237–5244
DOI: 10.1021/acs.chemmater.8b01906


Solution processing of methylammonium lead iodide perovskite from gamma-butyrolactone: crystallization mediated by solvation equilibrium

Read more on EurekAlert!

Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells
Journal of Materials Chemistry A, 2018, 6, pp.1780-1786
DOI: 10.1039/C7TA10217H


Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells

New formation strategy of hybrid perovskites via room temperature reactive polyiodide melts
Materials Horizons, 2017, 4, pp. 625-632
DOI: 10.1039/C7MH00201G


New formation strategy of hybrid perovskites via room temperature reactive polyiodide melts

Read more on EurekAlert!